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Abstract

Terminal velocity VT of a single bubble rising through an infinite stagnant liquid in surface tension force
dominant regime was investigated theoretically and experimentally. A theoretical VT model, which is ap-
plicable to a distorted spheroidal bubble with a high bubble Reynolds number, was deduced from a jump
condition and a potential flow theory for a flow about an oblate spheroid. Experiments were conducted
using air and water to measure bubble trajectories, shapes and velocities. As a result, it was confirmed that
(1) the primal cause of widely scattered VT in this regime is not surfactant concentration but initial shape
deformation, (2) small initial shape deformation results in a low VT and a high aspect ratio, whereas large
initial shape deformation results in a high VT and a low aspect ratio, (3) the primal role of surfactants in this
regime is to cause the damping of shape oscillation, by which a contaminated bubble behaves as if it were a
clean bubble with low initial shape deformation, and (4) the proposed model gives good predictions of VT
for single distorted bubbles.
� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Terminal velocity VT of a single bubble rising through an infinite stagnant liquid is of funda-
mental importance in the field of gas–liquid two-phase flows. A number of studies (e.g., Clift et al.,
1978; Magnaudet and Eames, 2000) therefore have been conducted to establish a reliable VT
model. As for the theoretical models, reliable VT models are available for two extreme cases, i.e.
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for small spherical bubbles and large spherical-cap bubbles. When a bubble is small enough to be
spherical and the bubble Reynolds number of which is less than unity, VT can be evaluated by
using the Hadamard–Rybczynski solution (Batchelor, 1967). However this solution is valid only
for a small spherical bubble in a pure system. If surfactants are accumulated on bubble surface,
the so-called Marangoni effect makes the interface immobile, and thereby the bubble behaves as if
it were a rigid sphere. In this case, the well-known Stokes drag model can be utilized for the
evaluation of VT. When a bubble is large enough to form a spherical-cap shape, VT is governed by
the inertial force, i.e. by a more or less constant form drag. Davies and Taylor (1950) proposed a
theoretical VT model for spherical-cap bubbles based on a potential flow solution for a flow about
a sphere. The use of the potential flow theory is valid at least in the vicinity of the nose of a bubble
because the inertial force is much larger than the viscous force and no boundary layer is formed in
the vicinity of the bubble nose. Surfactants do not influence VT, since the form drag is by far
superior to the skin friction. Their model therefore agrees well with measured terminal velocities
for large single bubbles in pure and contaminated liquids.
In contrast to these two extremes, no theoretical VT models have been proposed for a bubble of

intermediate size, in which the surface tension force plays a dominant role. In the case of an air–
water system at atmospheric pressure and room temperature, bubbles ranging from 1.3 to about 6
mm in sphere-volume equivalent diameter d may correspond to a surface tension force dominant
regime, in which VT gradually decreases with increasing d (Peebles and Garber, 1953). Most of
bubbles in practical applications therefore fall into this regime. Nonrectilinear motion such as
zigzag and helical paths, time-dependent distorted bubble shapes and widely scattered VT char-
acterize this regime (Aybers and Tapucu, 1969; Zun and Groselj, 1996; Lunde and Perkins, 1998;
Magnaudet and Eames, 2000; Ellingsen and Risso, 2001). Although the difference in measured VT
among different experiments has been attributed to the difference in surfactant concentration,
there is no firm evidence for this explanation. Aybers and Tapucu (1969) measured rising ve-
locities of single air bubbles in stagnant tap water, and concluded that the effect of surfactants on
the rising velocity is very small for bubbles larger than 1.3 mm, whereas bubble shape oscillation
has an important effect on the rising velocity. Lunde and Perkins (1998) reported that surfactants
cause a dramatic effect on bubbles in the surface tension force dominant regime, that is, con-
taminated bubbles exhibit only zigzag motions and shape oscillations vanish. However they did
not make any statements for the effect of surfactants on VT. Zhang and Finch (2001) recently
examined the effects of surfactant concentration on VT of 0.8 and 1.4 mm bubbles, and found out
that VT is independent of surfactant concentration. Ellingsen and Risso (2001) carried out an
intensive study on 2.5 mm air bubbles in tap water. They pointed out that small initial pertur-
bation applied on bubble surface develops the primary unstable mode which causes a plane zigzag
motion, then the secondary unstable mode causing a helical motion grows, and thereby when
strong initial perturbation is applied on a bubble, it is possible to observe a helical motion without
observing a preceding transitory zigzag motion (Saffman, 1956). Judging from these previous
studies, there is a possibility that the scatter of VT in the surface tension force dominant regime is
not caused by the difference in surfactant concentration but by the difference in initial conditions,
i.e. the way of bubble release.
In this study, terminal velocity of a single distorted bubble in the surface tension force domi-

nant regime was investigated theoretically and experimentally, while paying attention to bubble
shapes and the way of bubble release. To deduce a theoretical VT model, we assumed a distorted
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oblate spheroidal shape and extended the Davies and Taylor’s approach by taking a surface
tension force into account. Experiments on single air bubbles in distilled water or in water con-
taminated with surfactants were conducted to verify the proposed model and to examine the
effects of initial conditions and surfactants on terminal velocity.

2. Theory

When there is no phase change and the surface tension r is constant, the momentum jump
condition on a gas–liquid interface is given by (Ishii, 1975)

PGn� sG � n ¼ PLn� sL � nþ rjn ð1Þ
where the subscripts G and L denote the gas and liquid phases, respectively, P is the pressure, s
the viscous stress tensor, j the sum of two principal curvatures of the interface, and n the unit
normal to the interface which directs from the gas phase to the liquid phase. When a viscous force
FV acting on a bubble is much smaller than forces due to surface tension and inertia, FS and Fi, the
tangential component of Eq. (1) vanishes and the normal component reduces to the well-known
Laplace equation:

PG ¼ PL þ rj ð2Þ
The assumption of FV � FS; Fi would be valid at least for a frontal portion of a single bubble
rising through a stagnant liquid, provided that the bubble Reynolds number Re satisfies

Re � qLVTd
gL

	 1 ð3Þ

where q is the density and g the viscosity.
Then let us apply Eq. (2) to a distorted oblate spheroidal bubble shown in Fig. 1(a). Its major

axis is a and the minor axes are b and bb. The parameter b enables us to express various bubble
shapes such as a dimpled hemispheroidal-cap (�1 < b < 0), a hemispheroidal-cap (b ¼ 0), a
distorted spheroid (0 < b < 1, b > 1) and a spheroid (b ¼ 1). A dimpled hemispherical-cap and a
hemispherical-cap can be also expressed by setting a ¼ b. Then let us define an aspect ratio E by

Fig. 1. Dimensions and coordinates of a distorted bubble (b > �1): (a) distorted oblate spheroid and (b) surface

coordinates (h;/).
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E ¼ bþ bb
2a

ð4Þ

and an aspect ratio Ef for the frontal part of the bubble by

Ef ¼
b
a

ð5Þ

The two aspect ratios satisfy

Ef ¼
2

1þ b
E ¼ cE ð6Þ

where c is a distortion factor defined by

c ¼ 2

1þ b
ð7Þ

The sphere-volume equivalent bubble diameter d satisfies

pd3

6
¼ 2p

3
ðba2 þ bba2Þ ð8Þ

from which we obtain

a ¼ d
2E1=3

¼ dc1=3

2E1=3
f

ð9Þ

and

b ¼ dcE2=3

2
¼ dc1=3E2=3

f

2
ð10Þ

With the surface coordinates / and h shown in Fig. 1(b), the bubble surface is expressed as

x ¼ pð/Þ cos h

y ¼ pð/Þ sin h

z ¼ qð/Þ

ð11Þ

where ðx; y; zÞ are Cartesian coordinates and

pð/Þ ¼ a sin/ ð12Þ
qð/Þ ¼ b cos/ ð13Þ

In the frame of reference moving with the bubble, the bubble nose is a stagnant point. Hence
by applying the Bernoulli’s theorem to the points O[/ ¼ 0] and A[/ ¼ /Að< p=2Þ] in Fig. 1(a),
we obtain

PL;O ¼ PL;A þ 1
2
qLu

2
L;A � 1

2
qLgdc1=3E2=3

f ð1� cos/AÞ ð14Þ

where uL;A is the tangential component of liquid velocity at point A and g the acceleration of
gravity. On the other hand, the pressure inside the bubble satisfies
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PG;O ¼ PG;A � 1
2
qGgdc1=3E2=3

f ð1� cos/AÞ ð15Þ

Subtracting Eq. (14) from Eq. (15) and substituting Eq. (2) into the resultant equation yield

1
2
qLu

2
L;A ¼ rðjA � jOÞ þ 1

2
Dqgdc1=3E2=3

f ð1� cos/AÞ ð16Þ

where

Dq ¼ qL � qG ð17Þ
The curvatures jO and jA at points O and A can be evaluated using the following formula of
differential geometry:

j ¼ � p0q00 � p00q0

ðp02 þ q02Þ3=2
� q0

pðp02 þ q02Þ1=2
ð18Þ

where the prime denotes the differentiation with respect to /. Substituting Eqs. (9), (10), (12), (13)
into Eq. (18) yields

j ¼ 2E4=3
f

dc1=3
1

f ðm;EfÞ

"
þ 1

f ðm;EfÞ3

#
ð19Þ

where

m ¼ cos/ ð20Þ
and

f ðm;EfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ E2

f ð1� m2Þ
q

ð21Þ

Hence

rðjA � jOÞ ¼
2rE4=3

f

dc1=3
1

f ðmA;EfÞ

"
þ 1

f ðmA;EfÞ3
� 2

#
ð22Þ

where

mA ¼ cos/A ð23Þ
To evaluate uL;A in Eq. (16), let us make use of a velocity potential U for an axisymmetric potential
flow about a bubble moving with the velocity (0, 0, VT) in the z direction. As noted before, the use
of the potential flow theory is valid in the vicinity of the bubble nose under the assumption of
Re 	 1. The analytical solution for a potential flow about a moving oblate spheroid with the
aspect ratio Ef is readily deduced by making use of the following orthogonal coordinate system
ðf;m; hÞ:

x ¼ k cosh v sin/ cos h ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
cos h

y ¼ k cosh v sin/ sin h ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
sin h

z ¼ k sinh v cos/ ¼ kfm

ð24Þ
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where k is a constant and

f ¼ sinh v ð25Þ
Note that f ¼ const. constitutes a surface of spheroid with an aspect ratio f=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
and a

constant m corresponds to a hyperboloid. In this coordinate system, the velocity components
uf and um in f (normal) and m (tangential) directions are given by

uf ¼
1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ 1

f2 þ m2

s
oU
of

ð26Þ

um ¼ � 1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

f2 þ m2

s
oU
om

ð27Þ

According to Lamb (1932), the velocity potential U for an inviscid incompressible flow about a
moving spheroid with the minor axis b ¼ kf0 and the major axis a ¼ kð1� f20Þ

1=2
is given by

U ¼ Qmð1� f cot�1 fÞ ð28Þ
where

Q ¼ kVT
f0ðf20 þ 1Þ�1 � cot�1 f0

ð29Þ

Substituting Eqs. (28) and (29) into Eqs. (26) and (27) yields the following normal and tangential
components of liquid velocity on the surface of spheroid, i.e. at f ¼ f0.

uf ¼ VTm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 þ 1

f20 þ m2

s
ð30Þ

um ¼ VT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

f20 þ m2

s
1� f0 cot�1 f0

f0ðf20 þ 1Þ�1 � cot�1 f0
ð31Þ

The liquid velocity on the bubble front surface in the frame of reference moving with the sphe-
roidal bubble can be deduced by subtracting �VTez from the above equations. Here ez is the unit
vector in the z direction. The z components of the unit outward normal n and unit tangential t to
the surface of spheroid are given by mððf20 þ 1Þ=ðf20 þ m2ÞÞ1=2 and �f0ðð1� m2Þ=ðf20 þ m2ÞÞ1=2.
Hence �VTez can be decomposed into the f and m components as follows:

Vf ¼ �VTez � n ¼ �VTm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 þ 1

f20 þ m2

s
ð32Þ

Vm ¼ �VTez � t ¼ VTf0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

f20 þ m2

s
ð33Þ

Consequently, in the frame of reference moving with the distorted bubble, the normal and tan-
gential components, un and ut, of liquid velocity on the frontal part of bubble surface are given by

un ¼ uf � Vf ¼ 0 ð34Þ
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ut ¼ um � Vm ¼ VT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

f20 þ m2

s
1

ðf20 þ 1Þ cot�1 f0 � f0

" #
ð35Þ

Since Ef ¼ f0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f20

q
, f0 in the above equation can be replaced with Ef=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

f

p
. As a result, we

obtain the following expression for uL;A in Eq. (16):

uL;A ¼ VT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� E2

f Þð1� m2
AÞ

f ðmA;EfÞ2

s
1� E2

f

sin�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

f

p
� Ef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

f

p
" #

ð36Þ

Substituting Eqs. (22) and (36) into Eq. (16), solving the resultant equation for VT, and taking the
limit mA ! 1ð/A ! 0Þ yield

VT ¼ F ðEfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r
qLd

E4=3
f

c1=3
þ Dqgd

2qL

c1=3E2=3
f

1� E2
f

s
ð37Þ

where

F ðXÞ ¼ sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
� X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p

1� X2
ð38Þ

or in terms of E,

VT ¼ F ðcEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r
qLd

cE4=3 þ Dqgd
2qL

cE2=3

1� c2E2

s
ð39Þ

The reason for taking the limit is that the assumption of the potential flow is valid at least in the
vicinity of the bubble nose. A VT model including the angle /A is given in Appendix A.
As is well known, the upper bound of VT in the surface tension force dominant regime, which

may be observed in a pure system, is well correlated with (Mendelson, 1967; Marrucci et al., 1970;
Tomiyama et al., 1998)

VT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r
qLd

þ Dqgd
2

s
ð40Þ

The proposed VT model, Eq. (37) or Eq. (39), takes the similar form with Eq. (40). In addition, it
implies that VT depends not only on d and fluid properties but also on bubble shape, (E; c) or
(Ef ; c), so that if the bubble shape is not uniquely determined by d and fluid properties, VT would
be varied with the shape. In other words, there is a possibility that the cause of the large scatter of
VT in the surface tension force dominant regime lies in bubble shapes.
By substituting Eq. (39) into the force balance

CD

1

2
qLV

2
T

pd2

4
¼ Dqg

pd3

6
ð41Þ

we obtain the following drag coefficient CD:

CDðEo; c;EÞ ¼
2Eo

cE3=2ð1� c2E2ÞEoþ 16cE4=3
F ðcEÞ�2 ð42Þ
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where Eo is the E€ootv€oos number defined by

Eo ¼ Dqgd2

r
ð43Þ

Since the proposed VT model is based on the local instantaneous momentum jump condition and
the solution of the Laplace equation rU ¼ 0, Eq. (42) would be applicable to an unsteady bubble
motion.

3. Experiment

Fig. 2 is a schematic of the experimental setup. The height, width and depth of the tank were
1.0, 0.2 and 0.2 m, respectively. Distilled water or distilled water with a 0.00075% volume fraction
of liquid soap was stored in the tank to examine the effect of surfactants on bubble shape, motion
and velocity. A measured amount of air was stored in the bubble injection line. A single bubble
was released from a nozzle by making use of the static pressure difference between the height of
water in the tank and that in the small water container connected to the bubble injection line. The
water stored in the small container was the same water with the water in the tank. Four different
nozzles were used to produce various bubbles, the inside diameters of which were 0.51, 0.90, 1.45
and 3.19 mm. The static pressure difference was controlled by the elevation of the small container.
This bubble release method based on the static pressure difference and several nozzles enabled us
to examine the effect of initial shape deformation on bubble characteristics. Large initial shape

Fig. 2. Experimental setup and bubble injection device.
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deformation was realized by releasing a bubble either with a high static pressure difference or with
a nozzle, the inside diameter of which is much smaller than d. As an example, single 3.0 mm
bubbles released from small and large nozzles are shown in Fig. 3. The bubble detached from the
small nozzle (Fig. 3(a)) was more deformed than the bubble from the large nozzle (Fig. 3(b)).
Two high-speed digital video cameras (Kodak Motion Corder Analyzer SR-1000, shutter

speed¼ 1/5000 s, frame rate¼ 250 frames/s, 512� 512 pixels in one frame) were used to obtain
three-dimensional bubble trajectories, instantaneous bubble velocities, instantaneous aspect ra-
tios, terminal velocities and time-averaged aspect ratios. The camera position and zoom ratio were
determined so as to capture more than one wavelength of a fluctuating bubble path within the
frame of the camera. Two examples of original bubble images are shown in Fig. 4(a). To improve
the quality of the original image, a background image, which was recorded with the absence of a
bubble, was subtracted from the original image as shown in Fig. 4(b). Then the improved image
was transformed into a binary image (Fig. 4(c)), by which an instantaneous three-dimensional
position RðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ of the center of bubble area, and total lengths of instantaneous
major and minor axes, AðtÞ ¼ 2aðtÞ and BðtÞ ¼ ð1þ bÞbðtÞ, were determined as shown in Fig. 4(d).
The measurement error of RðtÞ depends on the spatial resolution of the original image. One pixel
size corresponded to 0.029 mm for bubbles less than 1 mm in d, 0.059 mm for 16 d < 1:5 mm,
and 0.098 mm for d P 1:5 mm. As was pointed out by Lunde and Perkins (1998), how to quantify
the position and shape of a deformed bubble from its two-dimensional projections is not obvious.
It is, in a strict sense, impossible to accurately measure a position of the center of bubble volume,

Fig. 3. Detachment of a 3.0 mm bubble (time step between two consecutive images is 0.002 s): (a) small nozzle (large

initial shape deformation) and (b) large nozzle (small initial shape deformation).

Fig. 4. Determination of bubble position and total lengths of axes, A and B.
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AðtÞ and BðtÞ from the two-dimensional projections. The camera I in Fig. 2 provided images for
evaluating xðtÞ, zIðtÞ, AIðtÞ and BIðtÞ, whereas the camera II offered images for the evaluation of
yðtÞ, zIIðtÞ, AIIðtÞ and BIIðtÞ. Here the subscripts I and II denote the camera I and II, respectively.
The equalities, zIðtÞ ¼ zIIðtÞ, AIðtÞ ¼ AIIðtÞ and BIðtÞ ¼ BIIðtÞ would hold if and only if a bubble
possesses the axisymmetry. As an example, measured zIðtÞ, zIIðtÞ, xðtÞ, yðtÞ, AIðtÞ, AIIðtÞ, BIðtÞ and
BIIðtÞ for a 3.0 mm bubble with zigzag motion and a 3.0 mm bubble with helical motion are shown
in Fig. 5(a) and (b), respectively. Instantaneous aspect ratios, EIðtÞ and EIIðtÞ, and instantaneous
velocities, VxðtÞ, VyðtÞ, VzIðtÞ and VzIIðtÞ, are also shown in the figure. The latter quantities were
calculated by using

EIðtÞ ¼ BIðtÞ=AIðtÞ; EIIðtÞ ¼ BIIðtÞ=AIIðtÞ ð44Þ

VxðtÞ ¼
xðt þ DtÞ � xðtÞ

Dt
ð45Þ

VyðtÞ ¼
yðt þ DtÞ � yðtÞ

Dt
ð46Þ

VzIðtÞ ¼
zIðt þ DtÞ � zIðtÞ

Dt
; VzIIðtÞ ¼

zIIðt þ DtÞ � zIIðtÞ
Dt

ð47Þ

where Dt ¼ 0:004 s. As can be understood from this figure, the difference between zIðtÞ and zIIðtÞ
was not so large as to cause a significant difference in VzðtÞ. On the other hand, the difference in the
major and minor axes measured by the two cameras caused the maximum difference of about 20%
in the instantaneous aspect ratios, EIðtÞ and EIIðtÞ. However there was no need to accurately
measure instantaneous bubble shapes because the main purpose of this study is not the shape
oscillation but the terminal velocity. Hence the evaluation of EðtÞ was carried out by using images
taken with the camera I, and zðtÞ was evaluated as zðtÞ ¼ ðzIðtÞ þ zIIðtÞÞ=2. Uncertainties in
½VBðtÞ ¼ ðVxðtÞ; VyðtÞ; VzðtÞÞ;EðtÞ� estimated based on the spatial resolution of images were [0.007
m/s, 5.2%] for d < 1 mm, [0.015 m/s, 4.0%] for 16 d < 1:5 mm, and [0.024 m/s, 8.6%] for d > 1:5
mm.
In a wavelength k of a more or less periodic bubble path, VzðtÞ and EðtÞ exhibit two cycles of

fluctuation. Hence the terminal velocity VT was evaluated as the ratio of the distance k to the time
duration T required for a bubble to travel k, by which uncertainty in measured VT was decreased
to �0.00137 m/s. A time-averaged aspect ratio E, which will be used in Section 4, was defined as
an arithmetic average of EðtÞ data within k. Note that the difference between EI and EII i.e. be-
tween the mean aspect ratios deduced from images obtained by the camera I and II, was not so
large. For example, ðEI;EIIÞ ¼ ð0:819; 0:823Þ for the data in Fig. 5(a) and (0.739, 0.749) for the
data in Fig. 5(b). Hence measured time-averaged aspect ratios might involve less errors than EðtÞ.
Measurements of VT and E were carried out at the elevation about 170 mm above the nozzle tip

(150 < z < 200 mm). Hereafter the distance from the nozzle tip is denoted by z. To examine
whether or not bubbles reach terminal conditions at z ¼ 170 mm, terminal velocities were also
measured at z ¼ 900 mm. Fig. 6 shows comparisons between VT at z ¼ 170 mm and VT at z ¼ 900
mm for (a) single bubbles in the distilled water and (b) those in the water with surfactants. In both
cases, VT at z ¼ 900 mm was slightly larger than that at z ¼ 170 mm. This slight increase was due
to the volume expansion caused by the decrease of static pressure. Hence we could confirm that all
the bubbles in the experiments reached the terminal conditions at z ¼ 170 mm. According to
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Zhang and Finch (2001), the traveling distance to reach a terminal condition depends on surf-
actant concentration, and it decreases with increasing the concentration. The fact that contami-
nated bubbles in this study reached the terminal conditions within a short distance (z < 170 mm)

Fig. 5. Instantaneous bubble positions, shapes and velocities deduced from images taken by two cameras: (a) 3.0 mm

bubble with zigzag motion and (b) 3.0 mm bubble with helical motion.
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therefore implies that the water with a 0.00075% volume fraction of liquid soap was fully con-
taminated with surfactants.

4. Results and discussion

4.1. Single bubbles in distilled water

As a result of experiments using the distilled water, we confirmed that bubble motion, shape
and velocity are markedly sensitive to an initial condition, i.e. the way of bubble release. Except
for the remark made by Zhang and Finch (2001), the well-known large scatter of VT in the surface
tension force dominant regime has been attributed to the difference in the amount of surfactants
accumulated on bubble surface. However this scatter is not caused by the difference in surfactant
concentration but by the difference in initial shape deformation, as will be disclosed in the fol-
lowing.
Fig. 7(a) and (b) are two examples of consecutive bubble images, instantaneous aspect ratios

EðtÞ, instantaneous rising velocities Vz, bird’s eye and top views of trajectories for 3.0 mm bubbles
in distilled water. The time interval of two consecutive images is 0.02 s. As shown in Fig. 7(a),
when a bubble was released from a nozzle with small initial shape deformation, the rising velocity
Vz was low, the motion was apt to be zigzag, and the aspect ratio kept a high value. To the
contrary, when it was released with large initial shape deformation, Vz took a higher value, the
motion was likely to be helical, and the aspect ratio kept a low value as shown in Fig. 7(b). As a
result, even in the distilled water, measured VT widely scattered in the surface tension force
dominant regime as shown in Fig. 8. It should be noted that terminal velocities for single bubbles
with small initial shape deformations are not so much scattered, whereas those for bubbles with
large initial shape deformations scatter widely. The multiple terminal conditions might result from
a certain kind of bifurcation caused by the nonlinearity in the Navier–Stokes equation and a
nonlinear link between the momentum jump condition and Navier–Stokes equation, i.e. the link
between the bubble interface and the flow field induced by a bubble itself. The trigger causing the
bifurcation might relate with the surface free energy rS, where S is the area of bubble surface.
When initial shape deformation is large, bubble shape is stretched as shown in Fig. 3(a). As a

Fig. 6. Comparisons of VT at two elevations.
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Fig. 7. Consecutive images, top and bird’s eye views of trajectory, instantaneous aspect ratio and instantaneous rising

velocity of a single air bubble (d ¼ 3:0 mm) in distilled water: (a) small initial shape deformation (zigzag motion) and

(b) large initial shape deformation (zigzag then helical motion).
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result, the bubble starts its motion with a surface free energy larger than that of a bubble with
small initial shape deformation. Since this is merely a speculation, further study on the cause and
trigger of bifurcation must be carried out in the future.
The types of motion in Fig. 8 were determined at the region of 1506 z6 200 mm. Motion types

were also observed for several bubbles at 9006 z6 950 mm to examine the occurrence of tran-
sition from zigzag to helical motion or vice versa. Results are summarized in Table 1. As has been
pointed out by many researchers (e.g., Ellingsen and Risso, 2001; Saffman, 1956; Lunde and
Perkins, 1997), only the transition from zigzag to helical motion was observed. Note that even
when a bubble with large initial shape deformation exhibited a helical motion at z � 170 mm, its
initial fluctuating motion was apt to be zigzag as shown in Fig. 7(b). These results therefore
support the conclusion of Ellingsen and Risso; the primary unstable mode causing zigzag motion
develops first and the secondary unstable mode causing helical motion then grows. In other
words, large initial shape deformation augments the growth rate of the secondary unstable mode,
whereas small initial shape deformation delays the transition from the primary to secondary
unstable mode. Hence it would be impossible to predict a motion type only with d and fluid

Fig. 8. Measured terminal velocities of single air bubbles in a distilled water. Note that measured VT for d < 1:3 mm

agrees with a CD correlation for a pure system (Tomiyama et al., 1998) and Eq. (40) runs through the upper bound of

measured VT. Motion types were measured at about 170 mm above the nozzle tip.

Table 1

Motion types at z ¼ 170 and 920 mm

Bubble diameter d (mm)

2.0 3.0 4.0

Total number of sampled bubbles 56 30 20

Zigzag (z � 170 mm) to zigzag (z � 920 mm) 37 8 6

Helical (z � 170 mm) to helical (z � 920 mm) 14 21 13

Zigzag (z � 170 mm) then helical (z � 920 mm) 5 1 1

Helical (z � 170 mm) then zigzag (z � 920 mm) 0 0c 0
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properties. As can be understood from Fig. 8 and Table 1, the bubble motion at a certain ele-
vation from a nozzle could be either zigzag or helical, depending on the way of bubble release.
Therefore the motion regime suggested by Aybers and Tapucu (1969), i.e. helical in 1:3 < d < 2:0,
zigzag then helical in 2:0 < d < 3:6, and zigzag in 3:6 < d < 4:2 mm, must be regarded as merely
the outcome of their bubble release method.
Since it was experimentally and theoretically confirmed that VT depends not only on d but also

on the aspect ratio E, the proposed VT model was compared with the measured VT. As mentioned
in Section 3, the measurement of the distortion factor c for distorted wobbling bubbles was almost
impossible. The comparison was therefore carried out by assuming that bubble shapes were
spheroidal, i.e., c ¼ 1. With this assumption, Eq. (39) reduces to

VT ¼ sin�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
� E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p

1� E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r
qLd

E4=3 þ Dqgd
2qL

E2=3

1� E2

s
ð48Þ

As shown in Fig. 9, the proposed model gives good predictions for the effects of d and E on VT,
i.e., VT decreases with increasing the mean aspect ratio, and the effect of E on VT within the range
of 1:56 d 6 5:0 mm becomes less significant as d increases.
Then the instantaneous bubble rising velocity Vz was calculated by substituting the measured

instantaneous aspect ratio EðtÞ into Eq. (48) to examine the applicability of the proposed VT model
to the evaluation of Vz. Fig. 10 shows comparisons between measured and calculated Vz. Although
the calculated Vz does not agree so well with the measured Vz, the trend of velocity fluctuation is
well reproduced by the model. The error could be reduced by improving the accuracy of EðtÞ and
by taking account of other transient forces such as a virtual mass force and a lift force caused by
wake shedding (de Vries et al., 2001).

4.2. Single bubbles in water contaminated with surfactants

Fig. 11 shows measured VT in the water contaminated with surfactants. Terminal velocities of
contaminated bubbles agree well with those of clean bubbles with small initial shape deforma-
tions. As suggested by Lunde and Perkins (1998), contaminated bubbles did not exhibit helical
motions even when they were released with large initial shape deformations. Therefore it can be
concluded that a contaminated bubble behaves as if it were a clean bubble with small initial shape
deformation. This coincidence can be explained by the well-known fact that the damping coef-
ficient of surface tension wave or capillary wave becomes much higher when surfactants are ac-
cumulated on the gas–liquid interface (Landau and Lifshitz, 1987). Hence, even if a bubble is
released with large initial shape deformation, the shape oscillation caused by the initial defor-
mation rapidly damps down in a fully contaminated system, which results in a high aspect ratio
and a low terminal velocity. Several examples of consecutive images of single bubbles in the
distilled and contaminated waters are shown in Fig. 12. The time interval of two consecutive
bubble images is 0.02 s. The 3.0 mm bubble in the contaminated system was released with large
initial shape deformation. However soon after the detachment from the nozzle, its motion became
closely similar to the motion of a 3.0 mm clean bubble with small initial shape deformation. In the
cases of d ¼ 4.0 and 5.0 mm, contaminated bubbles did not exhibit large shape oscillation due to
the strong damping effect caused by surfactants. If water is less contaminated with surfactants
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than the contaminated water in the present experiment, the damping might not be so rapid.
However, judging from the experimental evidence that VT does not depend on surfactant con-
centration (Zhang and Finch, 2001), shape oscillation caused by large initial deformation would
gradually damp down even in a slightly contaminated system, and when a bubble reaches the
terminal condition, it would behave as if it were a clean bubble with low initial deformation.
According to Wellek et al. (1966), the mean aspect ratio E in a fully contaminated system is well

correlated by

E ¼ 1

1þ 0:163Eo0:757
ð49Þ

The validity of this correlation can be confirmed by Fig. 13, in which the measured mean aspect
ratios of contaminated bubbles are plotted against the E€ootv€oos number. The solid curve in Fig. 11
was drawn by using Eqs. (48) and (49). The lower bound of VT in a fully contaminated system is
well traced by the proposed model and Wellek correlation.

Fig. 9. Comparisons between measured and calculated terminal velocities in distilled water.
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Now we can summarize the primal role played by surfactants in bubble dynamics as follows:

(I) Viscous force dominant regime (small spherical bubble): The accumulation of surfactants on
bubble surface induces the so-called Marangoni effect that makes the bubble interface immo-
bile as if it were a rigid sphere. The boundary condition on the interface therefore changes
from free-slip to no-slip, which results in the increase in the viscous drag and the decrease
in VT.

(II) Surface tension force dominant regime (intermediate bubble): Surfactants damp down the
shape oscillation, by which the mean aspect ratio E increases, and thereby VT becomes close

Fig. 10. Application of the proposed model to the evaluation of instantaneous rising velocity.
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to that for a clean bubble with small initial shape deformation. Consequently, the scatter of
VT caused by initial shape deformation becomes much smaller than that in a pure system.

Fig. 11. Measured and calculated VT in contaminated water, and the measured VT for bubbles with small initial shape

deformation in distilled water quoted from Fig. 8. Note that measured VT for d < 1:3 mm is close to the value calculated

by a CD correlation for a contaminated system (Tomiyama et al., 1998), and high terminal velocities were not obtained

even when a bubble was released with large initial shape deformation.

Fig. 12. Shapes and trajectories of single bubbles in pure (P) and contaminated (C) systems: LD––large initial shape

deformation; SD––small initial shape deformation.
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(III) Inertial force dominant regime (large bubble): Due to high inertia, the surface tension ceases
to play a dominant role in bubble motion and shapes. Although there might be a certain por-
tion of bubble interface where the characteristics of viscous drag FV is altered by the Ma-
rangoni effect, this slight change in FV has little influence on VT because the form drag
due to inertia is much higher than FV. Similarly the surface tension force FS has negligible
effects because FS is proportional to d�1 (see Eq. (39)).

Up to the present, the role (II) has not been pointed out, and the role (I) has been postulated
even for bubbles in the surface tension force dominant regime. This postulation has caused
confusion not only to experimentalists but also to CFD researchers. When we attempt to
measure VT, it is inevitable to release a bubble with a certain magnitude of initial shape de-
formation. Rather a bubble must be often released with large initial shape deformation. As a
result, we may obtain two curves in a d–VT diagram. The one is constituted by data obtained in
a pure system, which is close to Eq. (40). The other is constituted by data obtained in a system
contaminated with surfactants, which is close to the lower bound of VT in Fig. 8. Since we have
obtained the two curves and postulated the role (I) even for the surface tension force dominant
regime, we are ready to conclude that the immobile interface should be the reason of low VT in
systems contaminated with surfactants. CFD researchers have faced with a trouble in the
prediction of VT. The trouble is that in spite of using ‘‘clean’’ continuity and Navier–Stokes
equations, interface tracking simulation is apt to yield VT close to that of a bubble in a con-
taminated system. Now this paradox is easy to answer. In interface tracking simulation, a
spherical shape is usually assumed as an initial bubble shape. This initial condition corresponds
to a bubble with small initial shape deformation so that the predicted VT is likely to be close to
the lower bound of VT in Fig. 8.

Fig. 13. Comparison between measured mean aspect ratios of fully contaminated bubbles and Eq. (49).
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5. Some notes

The closure of the VT model, Eqs. (37) and (39) or (48) requires a model for evaluating the mean
aspect ratio E and the mean distortion factor c. In this evaluation, we need to solve the continuity
and Navier–Stokes equations together with jump conditions under given initial and geometric
boundary conditions. Hence it would be very difficult to develop a mathematically closed model
of VT. Therefore a better strategy would be to develop empirical correlations of E and c for a
particular problem of concern. Once the range of E is given as a function of bubble diameter, it is
possible to determine the range of terminal velocity by substituting the minimum and maximum
values of E into Eq. (48).
One exception might be a mean relative velocity of bubbles in a turbulent bubbly pipe flow.

Under the action of bulk liquid turbulence, bubbles would take various aspect ratios. As a result,
what one can expect for the mean bubble relative velocity is the mean value of the scattered VT. As
can be understood from Fig. 8, the mean value within 2 < d < 5 mm is close to 23 cm/s. This
value corresponds to the well-known drift velocity given by

VGJ ¼
ffiffiffi
2

p rgDq
q2
L

� �1=4

ð50Þ

This might be the reason why the above equation together with a drift-flux correlation (Zuber and
Findlay, 1965) yields good predictions of mean void fractions of bubbly upflows. That is to say,
even if each bubble in a bubbly flow takes various bubble shapes and relative velocities, we may
not have to take them into account for the purpose of evaluating mean relative velocities and
mean void fractions in turbulent bubbly flows consisting of bubbles in the surface tension force
dominant regime.

6. Conclusions

Terminal velocity VT of a single bubble rising through an infinite stagnant liquid in a surface
tension force dominant regime was investigated theoretically and experimentally. A theoretical VT
model, which is applicable to various kinds of distorted spheroidal bubbles with high bubble
Reynolds numbers, was deduced from a momentum jump condition and a potential flow theory
for a flow about an oblate spheroid. Experiments were conducted using air and water to measure
bubble trajectories, time-dependent shapes and velocities in pure and contaminated systems. The
following conclusions were obtained:

(1) The primal cause of large scatter of VT in the surface tension force dominant regime is not the
difference in surfactant concentration but the difference in initial shape deformation.

(2) Bubble motion, shape and velocity are remarkably sensitive to initial shape deformation.
(3) Small initial shape deformation results in a low VT and a high aspect ratio, whereas large ini-

tial deformation results in a high VT and a low aspect ratio, i.e. more deformed shape.
(4) Bubble motion is apt to be zigzag when initial shape deformation is small, whereas the tran-

sition from zigzag to helical motion is enhanced when initial shape deformation is large, as

1516 A. Tomiyama et al. / International Journal of Multiphase Flow 28 (2002) 1497–1519



indicated by Ellingsen and Risso.
(5) VT possesses a strong correlation with a mean aspect ratio E.
(6) The primal role of surfactants in this regime is to cause the damping of bubble shape oscilla-

tion, by which a contaminated bubble behaves as if it were a clean bubble with low initial
shape deformation.

(7) The proposed model, Eq. (48), agrees well with measured VT.
(8) The trend of fluctuation of rising velocity is well reproduced by the proposed model.
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Appendix A

According to Clift et al. (1978), when the bubble Reynolds number Re is high, the potential
flow theory is valid not only in the vicinity of the bubble nose but also up to a certain high angle of
/, e.g. / ’ 160�. Hence there is a possibility that Eq. (16) can give good prediction of VT by
specifying an appropriate angle /A for each problem of concern. It would be therefore of use to
write down a VT model which includes mA ¼ cos/A explicitly. The derivation is simple. Substi-
tuting Eqs. (22) and (36) into Eq. (16) yields

1

2
qLV

2
T

ð1� E2
f Þð1� m2

AÞ
f ðmA;EfÞ2F Efð Þ2

¼ 2rE4=3
f

dc1=3
1

f ðmA;EfÞ

"
þ 1

f ðmA;EfÞ3
� 2

#
þ 1

2
Dqgdc1=3E2=3

f 1ð � mAÞ

Solving the above equation for VT gives

VT ¼ f ðmA;EfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� E2

f Þð1� m2
AÞ

p F Efð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r
qLd

E4=3
f

c1=3
1

f ðmA;EfÞ
þ 1

f ðmA;EfÞ3
� 2

" #
þ Dqgd

qL

c1=3E2=3
f 1� mAð Þ

vuut
ðA:1Þ

The proposed model, Eq. (37), was deduced by taking the limit, mA ! 1, for the above equation.
If we assume a spheroidal bubble shape, then c ¼ 1 and Ef ¼ E, so that Eq. (A.1) simplifies to

VT ¼ f ðmA;EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� E2Þð1� m2

AÞ
p F Eð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r
qLd

E4=3
1

f ðmA;EÞ
þ 1

f ðmA;EÞ3
� 2

" #
þ Dqgd

qL

E2=3 1� mAð Þ

vuut
ðA:2Þ

To examine whether or not Eqs. (A.1) and (A.2) can give good predictions for VT, we applied Eq.
(A.2) to the present experimental data by setting /A ¼ p=2, i.e. mA ¼ 0. As a result, we obtained
good comparisons as shown in Fig. 14. This agreement implies that (i) the potential flow theory
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holds up to a certain high angle and (ii) Eqs. (A.1) and (A.2) are also of use in correlating ex-
perimental data.
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